
AD-A013 733 •

EVALUATION OF PROBABILITY OF DETECTION FOR SEVERAL
TARGET FLUCTUATION MODELS

David A. Shnidman

Massachusetts Institute of Technology

Prepared for:

Electronic Systems Division

8 July 1975

DISTRIBUTED BY:

ETT
National Technical Inforwnion Service
U. S. DEPARTMENT OF rCMMERCE



UNCIASSIFIED
SECURITY CLASSIFICATION or TIUS PAGE (them at.a Etareij-

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FO RM-. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ESD-TR-75-109

4. TITLE (1,4• Su6nlr) S. TYPE OF REPORT & PERIOD COVERED

Evaluation of Probability of Detection Technical Note
for Several Target Fluctuation Models

7 6. PERFORMING ORG. REPORT NUMBER

Technical Note 1975-35
S7 ,•;;-H3Q1- 8 CONTR%,CT OR GRANT NUMBERI&I

L Shnidman, David A. F!9628-76-C-0102

9. PERFORUING ORGANIZATION NAME AND ADDRESS to. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Lincol- Laboratory, M.I.T.
P.O. Box 73 Project No. 2027
Lexingt'n, MA 02173 Program Element No. 63208F

11. CONTROLLING OFFICE %IAME AN) ADDRESS I. REOORT DATE

Air Force Systems Command, USAF 8 July 1975
Andrei,-: AF8 h n C;3. NUMBER OF PAGES
Washingon, DC 2033180

It VtONITORt)4 AGENCY hAm2 & r.r.DREi•Stf4dfercmp PonCo.mullag Offie) IS. SECURITY CLASS. (ofthu report)

-Electronic Systems Division Unclassified
tansorn AFB [1sa. DECLASSIFICATION DOWNGRADING

Recdford, MA 01.-31 [ SCHECtJLE

16. OISTRI8UNION STATEMENT (af zAss Repon;

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT 1o1 t•e cts!,acr c.r•.eds Block W). if dsifereas fot keapoart

18. SUJPPLEMENTARY NOTES

None /

W). KEY W-R$ Soiai•.ese, Ue iar. ercss"r a*4deasfy 17 ioc& b lo r!

envelope detection Marcum model log-normal model
radar target detection Swerling models probability of detection

-1 ASSTRACT /Cc.Atuao rnwi ree sid. if acessmy *d sdee~uy by block asui.sht)

"Highly efficient algorithms have been derived for calculating the probability of detection. PD, for several
target fluctuation models. These include the Marcum model (constant target cross section) and the four

- Swerling models (chi-squared fluctuations). Programs are presented in computer free notation as well as
FORTRAN (for accuracies of Imr- and I0-12) for each of the mode!s.

In addition, an approximate expression for the elevation of PID, applicable when the target r.,turn Is con-
stant during a scan but exhibits log-normal fluctuation from scan-to-scan, Is presented, together with a listing
of a FORTRAN program that evaluates the expression. An efficient iteratlie routine for the dete.cmination of
the threshold from the probbility of fal.e alarm is also included.

FORM4SIO7 1473 EDITION OF I NOV 65 IS OBSOLETE tINCLASIFIW

SECURITY CLASSIFICATION OF THIS PAGE 13k.. 110a Wi..rrd.



MASSMACIIHUSETTS INSTITIITE OF TEC II HNO1,4 0

LINCOLN LAIIOIHATORY

SEVALUATION OF PROBABILITY OF DETECTION
FOR SEVERAL TARGET FLUCTUATION MODELS

D, A. SHNIDMAN

Grotp 44

TECHNICAL NOTE 1975-35

8 JULY 1975

DDC

Approved for public release; ditlribution unlimited, DD

I, I; XIN 0 TON MA S S A ('i US• E T T S



I ABSTRACT

Highly efficient algorithms Ihavc been derived for calculating the

4

probability of detection, PD for several target fluctuation mcdeis. T hesee

include the Marcum model (constant target cross section) and the four

Swerling models (chi-squared fluctuations). Programs are presented in

computer free notation as well as FORTRAN (for accuracies of 106 and

-1i

10-1 ) for each of the models.

In addition, an approximate expression for the elevation ofP

applicable when the target return is constant during a scan but exhibits log-

normal fluctuation from scan-to-scan, is presented, togc~ther with a list-

ing of a FORTRAN program that evaluates Ehe expressio~i.

An efficient iterative routine for the determination of the threshold

from the probability of false alarm is also included.
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SECTION 1

INTRODUCTION

Some highly efficient algorithms for the evaluation of probability of

detection on N incoherently integrated returns have been determined and are

presented here. The efficiency is, of course, inversely related to accuracy,

consequently two FORTRAN versions are given: one with accuracy of 10

and the other with an P.curacy of 10

J! In April 1960, the IRE Transactions on Information Theory published

papers by Marcum and Swerling [Refs. 1, 2, 3] that derived expressions for

the probability of detection, PD' for targets of constant backscattering

(Marcum) and of four different models for backscatter fluctuation (Swerling).

The resulting forr.mulas were manipulated into more convenient forms [Refs, 4,

5, 6, 1, and graphs supplementing those of Marcum and Swerling were furnished.

Heidbreder and Mitchell [Ref. 7] added the log-normal model for characterizing

I the fluctuation, This latter model has been found to be very useful for targets

that have large mean to median ratios. Other models exist [Refs. 8,9, 10],

but we will limit ourselves to these since they cover most situations well

& enough.

| Although the graphs provided in the references are useful, an efficient

means of computation is sometimes necessary. Two problems arise if one

•I uses the expression as presented. First, computations can be quite lengthy,

IN
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_ ~especially if great accuracy is required, and second, there can be problems

of overflow and underfiow even though. allanswers are between zero and one.

withut acrficng ccuacy Anapproximation is presented for the case in

fluctuations from scan to scan.

Programs for the evaluation of the various Ps)are presented in f

computer free language and in two FORTRAN versions for an IBM 370; the i
first with an accuracy of 10 and the second with an accuracy of 10

lz
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"SECTION 2

EXPRESSIONS FOR PROBABILITY OF DETECTION

In this section the expressions for PD for the six cases are presented

without proof since they are derived in the literature [Refs. 1, 2, 3. 4, 5, 6,7]. 7

In order to preserve the Swerling model numbers 1 through 4, we will refer

to the constant target as case 0, the Swerling cases as cases I through 4, and

the log-nornmal fluctuation as case 5.

2. 1 Case 0:

The Marcum derived expression for PD is

N - I +

I fX, Y e,' + N)' -2V=X;vdv

where N is the number of pulses incoherently integrated

,K Y is the threshold level

Xis the average signal-to-noise ratio of a single pulse

XN is the total signal-to-noise ratio of all N pulses

- I(Z) is the nth order modified Bessel function.

.1 3



If the N pulses are not identical, we still have

N *RN/ L

By substituting in Eq. (2. 1) the infinite series for In(Z)

IV(Z) = #)Zk!nI) (2.2)" : ~~kI(n +k~ll 2

k=0

and interchanging the order of summation and integration, one obtains Fehlrz-r Is

equation (Ref. 4]

-XN (XN)
N- Y e (2.3)

Sk=0 Tr=0

2.2 Case ]:

The signal-to-noise ratio, X, with mean X, is assumed constant

throughout the integration scan but distributed as chi squared with 2 deg-eec

of freedom from scan to scan. The resulting PD is [Refs. 5, 6]
yDY f

e for N I

I PN(, Y)=

-m I

=N]-1I -~- m

N-1 +

4 N-1

4



2.3 Case Z

The signal-to-noise rat*,. X, with mean X, ib assumed to be distributed

as chi-squared with 2 degrees of freedom and independent from pulse to pulse.

The expression for P is [Refs. 5, 6]

2PN(X,,Y)=1- • e 1l X/ (2.5)

m=N

2.4 Case 3

The signal-to-noise ratio, X, with mean X, is assumed to be dis-

tributed as chi-squared with 4 degrees of freedom from scan to scan but

constant within a scan.. The expression for P is [Refs. 5, 6]

y

e 122 +(R 2) for N Ii ~ ( ++/ X T/2) Y )

S3 PN(XY) =

N-2
+ e - for N 2

(N-z) (1 + X/)

+e I + XN/ I?- +m1N' i -2

N N-2

:N// (l 1)+ FNI2

ry Y Y
I N-2 +

5
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Z. 5 Case 4:

The signal-to-noise ratio, X, with mean X, is assumed to be distributed

as chi-squared with 4 degrees of freedom and indepi ndent from pulse to pulse.

The expression for PD is [Refs. 5, 6]

N k__Y V
+X/2' kTiRN- k)! e'MI

k=OmN+k

(2.7)

2. 6 Case 5:

The signal-to-noise ratio, X, with mean X, is assumed to be log-

normally distributed [Ref. 7] from scan to scan but constant within a scan.

The log-normal distributicn with parameters X and p is

PX(xI e 205 -x<*. (2.8)

where M = -i s the median of X and a- = 4zInp is the variance of InX. The
P

expression for PD is

D,

SPN(XYPP~ PNxYpX(xIXp dx (2.9)f

6



-SECTION 3

NEW EXPRESSIONS FOR PROBABILITY OF DETECTION

In this section the cxpressions for cases 0 through 4 are modified so

I [as to achieve more efficiently a specified accuracy and also to eliminate the

I problem of overflow and -nderflow. The efficiency is a result of the 3 facts:

1 (I) a rezursive method is used 1c evaluate the probability, (2) the bound on

the error consists of two factors, one in terms of X'N and one in terms of 7,

eae.h of which is approaching zero, and (3) the terms used for the bound are

similar to those used in the eialuation and require little additional calculation.

3. 1 Case 0:

We begin with Eq. (Z. 3) and change the order of summation (see Fig. 1)

to obtain

k k

-0 k0 O=n k 0l-~(XN+Y) X~- N~

! _ N ym --IN
j OPN(IXY) e --rl k fl l

i0 M . m-. k • 31N-l0 ni m -N k-m -N

N- 1 K 0mN -XNX
m-0 m=N k=0

since

k -0
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S[118-4-166371

N+2 - S 0l N'l
N 0 0 0

N-I 0 0 0 6

.1 I I

.1 I
CI I I

2 0 0 0 0

0 i 2 3 4

k

F ig. 1. (k. m) pairs contributing to the sum OPN(. Y).

8



We separate Eq. (3. 1) into two terms, PL(X. y), where with L : N

N- 1 ym yN Xk)PL(X'Y) N m eYrn-NteX N\

e=L~ + e"-L(. Ze

M=0 m=N =

(3. 3)

and

R ) e eL. (3.4)

m=L+1 k=O

so that, if we use PL(X, Y) to represent oPN(X, Y), our truncation error

will be RL(X, Y). We can bound RL(X, Y)

RL(XY)-e- L yL+1-N k

m=L+1 k=O

e e --- -R k (3. 5)
y E l k!

=1.



If we choose , large enough ouch that

L -~L+1-N-k

S1 YN X' -E (3.6)

mk0 k'

I; where f is our desired accuracy, then we have guaranteed that

0PN(Xy) - P,(Ry) _ C (3.7)

A program in computer-free notation to evaluate PL(X, Y) is shown

in Fig. 2. The notation used is based on one devised by Iverson [Ref. 111.

The arrow notation within the box symbolizes a specification, that is, the
statement SUM - YMS is translated to mean that the quantity SUM is specified
by YMS. A branch is denoted by an arrow outside the box leading to the next
statement to be executed. A comparison is denoted by a colon (:), and a
branch is executed if the comparison condition specified un the arrow is
satisfied; otherwise the next instruction in sequence is executed. As an
example, we interpret the segment below as follows: if M = N- 1, go to line
n+5, otherwise set M to M+l. Multiply YM by Y, divide by M, and set YMl
to this quantity. Set YMS to YMS + YM, set SUM to YMS, and branch to line
n.

Line number
xl - M:N-l

n+l M,-M + I

n +2 YM.-YM- Y/M

n+3 YMS-YMS+YM

n + 4 SUM- YM.4S

n +5 XKS I. 0

10



1 18-4j1GL38]

YM - 1. 0
YMS - 1. 0

M -0
M :N-1
M - M+ 1

YM-Y Y/M
YMS -YMS + YM

SUM - YMS
XKS - 1.
XK *- 1.0

K -K + 1
M - M+ 1

YM - YM -Y/M
YMS '- YMS +- YM

-Z
SUM-SUM+YM(1-e XKS)

XK -XK -Z/K
XKS -XKS + XK

(1-c YMS)(1 - e XKS)
-Y

P'-e sum EXIT

j Fig. 2. Program for evaluating PLX Y).

IL



The program, as it stands, suffers from two drawbacks. First,

there is a large region t" the XN - Y plane in which 0PN(X, Y) is equal to

one to within c. We can therefore avoid, without loss of accuracy, many

wasted computations by determining approximately this region in the XN -- Y

plane and by testing for the given N to see if (XN, Y) is in it. This is done

by noting that fot 6ach c we can determine a value K (X) (see Appendix B)

such that if

K < K•(X) (3.8)

then

X p < E/2 ( 3.9) t
Ep -P

p=O

Similarly we can find value M,(Y) such that if

N > Mc(Y) (3.10) V

then

N -1i " y m

e- > I -E/z (3.11)
m=0

II z?I
- ~L -~ --- ~~ - 2



II

It follows that if both Eq. (3. 8) and N + K > Me(Y) are satisfied then

N-1 N+K m ( - N k

> eY ym + eY N• (N •2

OPN(XIY= eMn +! \ Jk!j

rn=O m=N

00 m (l -Z XN X k)Z

in!
inN+K+l =

N-1 N+K

-Z eY Y m _Y y

S- e/ (1 E/2)

1:M

-M!

m=N+Kl +1-

N+K m N+K i

M=0 m=N

= I -E (3. 12)

so to within an accuracy C, OPN is equal to one. Second, problems of over-

flow and underflow still exist. Underflow can be treated by determining if X

13 I
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-E

(or Y) is larger than a quanti'. E where e is at (or near) the emallest numnber

representable by the computer. If X is greater than E, so that evaluating

- -X
e would cause an underftow, we rewrite the term

-X - kin X + Inn-x x n=l =eExp
e e -e e (3. 13)

and compare Exp to E. If Exp is greater than E, then certainly e <<

and can be ignored. We then increase k until Exp < E and start our sum-

rnation from that value of the index. The Y terms can be similarly handled,

If Y is small enough relative to N, the sum

N-1

m0O

by itself may be within c of 1, and thiE is tested in the program.

If Y is large relative to X, then oPN(X, Y) is small and, depending

on N, may be within c of zero. A test is made in the program (see Fig. 4,

KD:X) to determine if setting oP to zero is appropriate.ON

We have assumed that the accuracy of the exponential function is

greater than c and its errors can be ignored. It is necessary, however, to

consider round-off errors. Since we are working in floating point, relative

"errors are small for a multiplication: "r.'d since all our answers lie between

zero and one, the absolute error is less than relative error and can be ignored.

14
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For addition, round-off errors can be important. If the algorithm of Fig. 2

terminates, then the answer is accurate to within c. Round-off error, how-

ever, can prevent it from terminating. The problem is exemplified by the

following situation: suppose X is zero,

L-1 e" Yym

e<I-

m=0

so that the criterion, Eq. (3. 6), is not met, and

_ yL

e -<S

where

I0"m 4

Sand n is the number of significant digits. Then, because of round-off error,

I

L L-

~~~ ee I
nr=O as represented m= as represented

by the computer I by the computer
TV

15__ _ _ _ _1

- - __ -_ - -~=-~4i



i E

so that the algorithm will not end since the criterion, Eq. (3. 6), will never

be met. The larger the value of Y, the smaller each individual term in the

sum and the greater the number of significant terms. For any E and any

finite number of significant digits, there exists a large enough Y such that

our criterion will never be met.

We therefore have a trade-off between the number of significant digits

carried, the accuracy, and the maximum values for X and Y. If Z = max(X, Y), K!
the worst case situation is N = I and X Y = Z. We consider some specific

-6
cases. With E = 10 and double precision (16. 8 digits, or more precisely

56 bits), the upper limit on Z was not found: it is greater than 1 million.

With e 10 and double precision, an upper limit between 110,000 and

115, 000 exists on Z. For single precision (7. 2 significant digits or 24 bits),

Fig: 3 shows approximate upper limits on Z for the different e. If one can M

be satisfied with the limits single precision imposes on Z for a given c, then

computational efficiency will be derived from using it; otherwise double

precision must be used.

The final program is shown in Fig. 4, and the double precision

-6 -12
FORTRAN version with =10 and c = 10 is given in Appendix A.

Two final points that should be mentioned are (1) since it will be use-

ful in computing some of the latter P the value of e"Y yN-I/(N - 1)!

is also an output of our program for 0PN(X, Y). For values of Y for which 19
X Y) is set to I or 0, we choose e Y /(N-)! = 0, and (2) the 5

relationship between 0 P N(3, Y) and the Q - function, which is def. ied by

2 2Co a +v
2 I6-ve(av) dv (3. 14)

-N = 3

fo5



500-

0t

600

500

-6--

Ix

400-•

I° I
106 10- 10- 4  10-3

Fig. 3. Approximate limits on , and Y vsc. for single precision.

1
I

I 17



P-i
YM -0 fEXIT

E 5 N- 1t K-0
XN: E

Y:E

YMS - Ym- /

YMS-YMAS - YM

:YMS

y 0 EXIT__ __ _

SUM - MS EI
KK-K1

Ym - m . Y/M
YMS - MS - Ym
SUM SUM *YM(]I- XKS)

XK -XKF XNIK

XKS-XKS. K
N

P -SUM -. EXIT

MLY-

M-M .1

V-MLYMLY-MLV.f.Ij

KDMN

K :K
K-K -1

KLX -0
LX - Ir.X N

K-I
LK :n
KI L L K



is simply

OPN(X'Y)=QN , " (3. 15) ,2

3. 2 Case 1:

Now that we have a highly efficient means of calculating oPN(X, Y),

we can use 0PN(0, Y) in evaluating lPN(X, Y). In terms of 0PN( 0 , Y),

Eq. (Z. 4) becomes

7 __forN 1

e

1PN(X, Y) = (3. 16)

0 N -1I(0'Y) for N 2

Y
1 • N )-11e + XN
+i + +-0t) e

Since the term in the square bracket is bounded between zero and one, then if

y1 )N 1 1+X+ -- e < E/10 (3. 17)
t \ x•,J

XI-

19I



we need not calculate the second term for N 2 2. The program for IPN(X, y)
is shown in Fig. 5, and FORTRAN versions for e = 10- and 10- are given

in Appendix A.

3. 3 Case 2:

In terms of oPN(X, Y), 2PN(XY) beccmes simply

2PN(X'Y)- oPN (3.18)

3.4 Case 3:

Rewriting Eq. (2. 6) in terms of 0PN(X, Y) we obtain

Y

e +X7/2 (+I+X/2)Y) foYN=

3 PN(XM Y) =

yN 1 -Y 1e1-

(N 2)- + 0 N/10,l Y) for N a2
e1 -+/) '. XN/[) 0+N -

Y

S"N/2PN 2

X P 0' (•3.1i9)0 [1ON I (o R~N/2)] 
(319

20



N:
SUM - 0
EXP -Y (N -1) in Il+-

I +XN
N N

EAP :30

SUM + 0 1

XN

P-SUM + 0PNI (0,Y) t. EXIT

y E
1+~

r e • EXIT A

F 0 'EXIT

Fig. 5. Program for Swerling, Case 1.

2
ii

S~21
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_____! ~

since 0 1 0PN (0, 1, we first check to see if

0I

+ l+XN/ tJ

in which case- the last term for N - 2 can be ignored. As mentioned above, L•we save the term e- y'N- 1/(N - 2)' (0
: / incalculating 0PN - and

tin is used for the first term. The program is shown in Fig. 6, and FORTRAN

-6 - 12
versions for E = 10 and 10 are given in Appendix A.

I - ----
i im

IS



N
N1

SUM -0

EXP - y -(N -2) in( I
1 + RN/2 \ N/2

< I1 S •! I

SUM-C I- 1-
0 N-'21 +~N2

XN/ 2

SUM -SUM+ P (0,Y)

Z -YMO (frcm oPN-1 prcgwom)

I P-SUM+ZY _ 1 EXIT
l+XN/ 2

Iy
i i I + X/2SP - 0- EXIT

Y
S-e 1+5/2 (-/2 EXIT

I I+ R/2?

Fig. 6. Program for Swerling, Case 3.
2

23
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3.5 Case 4:

Equation (2. 7) is manip-ulated by interchanging the order of summation

to obtain

N2N-1 -
- N

-R + n2-N
4N,) 1I +X/2) kN 1(N k)

Ik=0

-- N -•\k

n=2N k0! k! (N- k)!J

FFA•:N 2N I N ,

•. .+ k =NM! k!. (N -k)!

+e + 1 + +//z:/

2 ;

S!= l[inN N! XI_2 1 N -k

en 1 e i +! N -- k Y=N in! k(N-k) X/2

~~ Y M_
2N-1 -- L. (Y m- \

OPN - e m!. N . I -/1-- m=N i= J --X/)J

(3.21)

24-4

,,:•--



There are two cases in which we can simplify t1,e calculation of 4P N(, Y).

The first is the case where Y/(l + X/2) is small enough, relative to N, that

OPN (O.1 - is wthinEof 1, andwe set 4PN(Y, Y) to 1 ignoring the second
term. The second case is when Y is so large, relative to N, that

I+X/2

2N-1 - _ _ __ _ _ _

e <+ <C
m-0

and we can set 4PN•, Y) to zero. This translates into a test of the form

2N-1<K 1 (3. 22)
( 'l + X/2)

where K ( the same function as in Eq. (3. 8) and depends on c. The

program for 4PN(X. Y) is shown in Fig. 7, and FORTRAN versions for E 106

and 10 are given in Appendix A.

- I
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118-4-66431

XN N In(I + X/2)

V -

SUM PN (O,V)
VM -- YMO [from 0PN (0,V)]

S1-SUM
P I- 1b EXIT

2N- I K (Y)EX

F P- 0 EXiT

XN :E
-XN

ZK -e
ZKS - ZK

z -X/2
M:2N-1
M-M+ I

VM -VM • V/M

SUM - SUM + VM(1 - ZKS)
2N-M

ZK -- ZK - Z -( I

ZKS - ZKS + ZK
P- SUM EXIT

_2M-M+1I XN -XN -InXR/2 - In -
2N +Mj >

S--" XN :E
FFý-XNZK e

VM vm-V V/M
SUM - SUM + VM

Fig. 7. Program for Swerlina. Case 4.
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SECTION 4

APPROXIMATION FOR CASE 5, LOG-NORMAL FLUCTUATION

In this section an approximation is presented for 5PN(X, Y,p). Kramer

ei al., [Ref. 12] suggested in their Appendix B that for N = 1, 5 N(X, Y, p)

can b.a approximated by

5 P , 1, / (4.1)

where

erfc (X) 1- 1 f e dt

is the complementary error function. No mention of accuracy is given, and

it became apparent that it is dependent mainly on the parameters Y, X, and p,

the accuracy deteriorating if Y is large or if X/p3 is near Y.

We will generalize the result for any N and consider the accuracy

problem. One way of looking at the approximation is to consider that we have

27



replaced 0PN(X. Y) by zero for X less than some XI0 and by one for K greater

then X Then,

5P•''P= X; PxX. p) dx=aI(X)• (4.2) 7

If we define II(XI) and (X) as

x

II(X1 ) OPN(x, Y) px(x[x, p) dx (4. 3)

and

I2 (X1) f [I - 0PN(X, y)J Px(XlX, p) dx (4.4)
Ix

then our error, E., is

E5 = 11(X1 )- k(X1 ) (4.5)

5 1
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OPN(X, Y) is monotonic increasing iin X from zero to one and, since we

are approximating this function by zero for X < X and by one for X < X

we want

0PN(XIY) (4.6)

NX 1 would then be the median of the distribution density
14

rn m-NeY ym ex x 0<< 47
eP~xY -;;;T1  e O~sx<- (4.7)

S0PN( Y) -. (m -N)!
m=N

but would also be very cumbersome to determine. Instead, we use the mean

of Eq. (4.7) for NX1

N - --- x n-N+l
r=N .(r- N)!.

II
-Y N Z ym(m + I)!

-- e ~(N + m)1.m

rnO

-Y E (m + N)Ym

m=N

e v (N .ye
Y- = YM (N! - .

m=N m=N
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ý%7 tA

Y for N I

Y-(N- 1)+e N- 11 I -f forN >-

i [ [Y-(N- 11] [ N PA +" yN-

E M. (N- )

y for N I

[Y N 1) 1 PFA +e Y(N-i )! forN >-2

(4.8)

where P the probability of false alarm, is defined by Equation (5. 1).

When is very small, which is usually the case, we can ignore it as wellPFA

as the termr

! N

(N W

S Y-(Nl ) (4.9) I

30
I
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NX is near the median and it is shown in Appendix C that _(N 1)
1~~ 0N~

approaches 1/2 as Y approaches infinity; i. e. , as Y -* -, NX 1 becomes the

median. Using Eq. (4. 9), the generalization of Eq. (4. 1) becomes

5P•€:' ~~It Y, -• (N - 1-)- _ •• -
5 N(XY' P )IY- N J - ) 1erfiýj, NM )5NN N-'"

(.4. 10)

Since our approximation

i°oY x< -"N-1)

P N(XY) (4. 11)
ON Y') Y-(N 1)

I for X > N

improves rapidly with increasing N, then our approximation for 5PN(X Y, p)

improves rapidly with increasing N. The worst case is, therefore, for

N 1.

"We now consider the error in this approximation. We have

5 Pi (yY ) =1(X) +1 1(X 1) -1 I(X 1 ) (4. 12)

14

and, with X chosen as in Eq. (4. 9), I1 and I are not only small for most

parameter values but also about equal and tend to cancel out each other. For

most cases we have

- IN

J( N-1))_ Y ( 1) <0,005 (4. 13)

I -7
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For small Y (<10) and/or large N, II and 12 are very small; but for large Y

and small N an accuracy of at least .005 relies on II and 12 cancelling.

Since the functions oPN(X, Y) in I and [I - 0PN(X, y)] in 12 are

reasonably symmetric about Y - (N - 1) we will have good cancellation
N

provided that Px(Xl - 6 IX, p) does notdiffer too greatly from Px(XI + 6 IX, p)

3
for small 6. Px(x, p) reaches a peak at x = -/p of

pxx/P P)= P (4.14)
2XV/r In p x

and if this peak is high, it must be a spiked function since the area under

pX(xX, p) is unity. Therefore, if the peak is large and XI P3 near X1 , then

I I and 12 are not likely to cancel. TLis combination of circumstances, however,

is usually of little interest because the peak in Eq. (4. 14) is large only if p

is very near 1 or larger than 15. In the first case this corresponds to a nearly

constant cross section, and case zero is more appropriate than case 5, and

-3
for the latter, X/p is small and is near XI only for very large PFA" In that

Scase, the terms that were dropped in Eq. (4. 8) are no longer negligible, and

Eq. (4.9) can not reasonably be used for specifying X1 .

I3
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SECTION 5

THRESHOLD LEVEL

The threshold level, Y, is related to the probability of false alarm,

PFA' by

N-1
PF = e-Y Ymm P 0,

-FA e N(0,Y) (5.1 )
m-0

where N is the number of incoherent integrations. DeLong and Hofstetter

[Ref. 13] suggest solving for Y in Eq. f5. 1) for a given PFA by solving for

FAA

the root of f(Y) where

0PN(0, Y) A
f (Y) = n MF 2

Employing the Newton-Raphson technique [Ref. 14] and noting that

- y__ N- 1 -

f'(Y) (P 1N )' (5.3)
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then

in 0PN(0 ' Y

YK + 1 = K + PFA (5.4)
e YKK - I(N- 1)!

OPN( 0'YK)

where, since f'(Y) < 1, k converges to the root of f(Y). A FORTRAN

coding (see Appendix A) using OPN(X, Y), in which starting values for Y are {

determined by

N1.l15_ 2 lOgl0 PFNA4
0 " o-N (5.5)

N 8 10log 1 0 PFA N _ 40

The underflow-overflow technique used in the program for case 0 (Eq. (3. 13))

is employed here also. The convergence was very rapid, usually requiring

only three or four iterations before the Yk and Yk + 1 df blst
k f~fered by less than

-12 -1210 For very large N, a relative error of 10 can be maintained, but

the absolute may exceed 10 due to round-off errors. For a small absolute

error requirement and large N, the can oscillate between two values

of Y instead of converging.
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SECTION 6

GENERALIZED FORMULATION

The results of Cases 0 to 4 have been generalized and the notation

unified by Swerling [Refs. 15, 16] by the introduction of parameter K. If

the chi-square distribution is generalized to a gamma distribution with

parameters K and

PX K,X) r (K) eX0 <

then

0 <K < 1 corresponds to Weinstock Case [Ref. 9]

K = 1 corresponds to Case 1

K = 2 ... '--responds to Case 3

K N corresponds to Case 2

K = 2N corresponds to Case 4

K corresponds to Case 0
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The probability of detection [Ref. 16] becomes

00 N- l+b

PN(X, Y,K)"Z ." F ( + e )K(=0 J z

(6. 1)

and Eq. (6. 1) can be manipulated as was Eq. (2. 3) to obtain

XN b

PN(X, Y,K) =e -Y"
N E . M! x xm=O m--N b-O N

(6. 2)

A program to evaluate Eq. (6. 2) to within an accuracy E is given in Fig. 8.

This program can be modified so as to eliminate underflow-overflow problems

as before by combining elements of Figs. 4 and 8 so that the variable K is

introduced and the quantities

('+- )Kand l+ /K)B"

replace e XN and e N/K, respectively, in Fig. 4.
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This formulatior of PD is not as efficient for calculation purposes as

is the special expression derived for Cases 0-4.

DA

g-4

2 -- - -- --



-"8 ~ ~ -16644

IT

START 
TK

ZKI '-ZK- I

XBS - XB2
M'-0

YM - e-
YMS - YM

M N-1 A
M-M + 1 I

YM YM - Y/M
YMS- YMS + YM

(1YMS)

YMO 0 E EX IT
SUM '-MS

B -B + 1
M-M + 1

ZKJ -ZKl +1I
YM - YM.- Y/M

YMS - YMS +- YMA
Sum -SUM + YM( 0 XBS)

XB -X6o V.- ZKJ/B
XBS'-XBS +XB

(I-yms) (I -XBS)
P -SUM

YMO -YM ~EXIT

A
Fig. F. Program for subroutine PCFEN\(N. X.Y, ZK. P, YMOI.
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SECTION 7

CONCLUSIONS

Highly efficient and accurate algorithms have been presented for

calculating the probability of detection for Marcum (Case 0) and Swerling

(Cases 1 through 4) models. Tests and reformulations are included to avoid

the underflow-overflow problem usually encountered for large parameter

values.

A simple approximation has been provided for the case in which the

radar cross section is constant with a scan but fluctuates log-normally from

scan to scan. The accuracy is limited but will suffice for most applications.

Guidelines as to which parameter combinations might pose an accuracy prob-

lem were given.

An efficient algorithm for determining the threshold level Y for a given

P has also been included.
FA -

Finally, with P = 10-6 Figs. 9, 10, and 11 compared PD(s) for

several of the cases for N = 1, 10, and 100,respectively. Case 4 curves, -,3

omitted on Figs. 10 and 11, lie between Case 2 and Case 0. For Case 5,

P= 1. 5 is used throughout.
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APPENDIX A

FORTRAN PROGRAMS

In this Appendix, FORTRAN versions of the programs to evaluate the

probabilities for cases 0-4 for E = 10-6 and c = 10"12 are given. In addition,

a program to determine the threshold for a given PFA is given.
F-6

The subroutine program for OPN(X' Y) i3 titled, with c = 10-6

-1'
PNXYS(N, X, Y, P, YMO) and, with c 10 , PNXYT(N, X, Y, P, YMO) where

N = number of incoherently integrated pulses

X = average single-pulse signal-to-noise ratio

Y threshold level

P =P (,Y
0 N(X,Y)

YMO=e yNe(N- 1)!

N, X, Y, are inputs; P and YMO are outputs. The output YMO is included

since other programs calling on 0PN(X, Y) have use for it.

Subroutine programs for Swerling (Cases I-A, are given in a single

program with four entry points. The titles for the four cases, with 10 6, are

SSWCI(N, XBAR. Y, P), SSWCZ(N, XBAR, Y, P), SSWC3(N, XBAR, Y, P) and

SSWC4(N, XBAR, Y, P), respectively, and those for E = 10 are entitled

TSWC1(N, XBAR, Y, P), TSWC&(N, XBAR, Y, P), TSWC3(N: XBAR, Y, P) and

TSW4(N, XBAR, Y, P). In all cases we have
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N = number of incoherently integrated pulBes

XBAR = average single-pulse signal-to-noise ratio

Y = threshold level

P = probability of detection.

A subroutine entitled PREAM (X, CE, Xl, X2, X3, X4, XK, IND) is

included as it is called by OPN(X, Y) and OPN (X Y). It evaluates the functions

K (X) and ME(Y) and

X the value of X or Y

CE = the corresponding C of (B:ll)

Xl = 18 or 34 for KG(X), and 40 or 80 for M (Y)

SX2 =150 or 175 for K (X)

X3 = 0.75 or 0.8 for K (X), and 1.3 or 1. 28 for M(Y)

X4 = 20 or 55 for K (X), and 24 or 52 for ME(Y)

IND is a flag, if IND = 2, the routine calculator M (Y),

otherwise K (X)

XK = output, either K (X) or M (Y)
C E

Finally, the subroutine program THRESH (N, TOL, PFA, YI ) is used

to determine the threshold Y1 in ac':ordance with Eqs. (5. 4) and (5. 5) where

N number of incoherently integrated pulses

the TOL = tolerance, i.e. , acceptable difference between YK 1 and

i} Yk for termination of the iterative process

I PA= input false alarm probability

] YI output threshold value.

A table of values (Table A-I) is included for the purpose of checking out

programs.
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USERID MASR CLASS A NAME PNXYS FORTRAN 041l4/75 12028023
OREAD PNXYS FORTRAN Al HASR 8/20/74 14010

SUBROUTINE PNXYS(N*XYPtYNO)
IMPLICIT REAL*8(A-H,O-l)
DATA E*EPSILN/175.00,1.D-6/
X=DFLOAT(N)*X
CALL PREAHB(X,16.12D0.18.DO,150.D0,.7500,20.D0,EKX,1)
CALL PREAMB(Y,16.12D0,40.DO,40.O0,1.3D0,24.DOEKY,2)
IF(DFLOAT(N)*LE*EKY-EXX)GO TO 300
Ps 1600
YMO=O.DO
RETURN

300 18-N-1
K-0
IF(X.GT.E)GO TO 10
XKxOEXP( -X)

5 XKS=XK
M-0
IFIY.GT.E)GO TO 20 Z
YMUDEXP( -Y) ý

70 YMS-YN
40 IF(M.EQ.18)G0 TO 30

MzM+1
YN=YM*Y/FLOAT (K)
YNSzYHS+Ym
IF(EPSILN.LE.I.DO-YNS)GO TO 40
Pzy"q5

YmozYM
X=X/DFLOAT( N)
RETURN

30 SUH=YMS
YHO=YM

60 K=K41

YM=YM*Y/FLOAT(M)
YNS=YNS+YM

91 SUN=SUM+YM* ( .D0-XKS)
XK=XK*XIFLOAT (K)
XKS=XKS.XK
ANSz( 1.DO-YMS)*( 1.DO-XKS)-_
IFIAt4S.Gi.EPSILt4)GO TO 60

50 P-SUM
X=X/OFLOAT (N)
RETURN

20 YMLYO0.O0
60YLOGODLOG(Y)

XMF=OLOG(DFLOAT(M))
YMLY=YNLY+YLOG-XMF
IF(Y-YNLY.GT.E)GO TO 600
YM=DEXP(I-Y.YNLY)
IF(N.LE.18)GO TO 70

YHS=YM
SUMO0.00
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KD=M-N
IF(DFLOAT(KD).LT.X)GO TO 80
P=0.DO
X=X/DFLOAT( N)
RETURN

80 K=K,1
XK=XK*X/FLOAT (K)
XKS=XKSXK
IF(K-KD)80,gO,90

90 K=K*1
GO TO 91

10 XKLX=0.DO
XLOG=DLOG(X)

210 K=K+l
XK F= DLOG ( FLOAT (K))
XKLX=XKLX.XLOG-XKF
IF(X-XKLX.GT.E)GO TO 210
XK=DEXP(-XXKLX)
18=IBtK
GO TO 5
END
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USERID HASR CLASS A NAME PNXYT FORTRAN 02/14/75 12028039
DREAD PNXYT FORTRAN Al MASR 8/20/74 14.011

SUBROUTINE PNXYTfNtX*YPtYMO)
IMPLICIT REAL*S(A-.HPO-Z)
DATA EEPSILN/l;5.D0,1.D-12/
XzDFLOAT (N) *X
CALL PREAMB(X930*DO934.DOO175-009.80095501J0,EKXil)
CALL PREAMB(Yt30.D0,8O.DO8O,.DO91.28D0,52.D00EKYs2)
IF(OFLOAT(N).LE.EKY-EKX)GO TO 300
P= 1 *DO
YNO=0.D0
RETURN

300 IB=N-i
K=0
IF(X.GT.E)GO TO 10
XK=OEXP( -X)

5 XKS=XK
W0o
IF(Y.GT.E)GO TO 20
YM=DEXP(-Y)

70 YHS=YH
40 IF(M.EO.IBJGO TO 30

M=M+1
YM=YM*Y/FLOAT(f0
YHS=YNS+YM
!F(EPSILN.LEo1.O0-YMS)GO TO 40
P=YKS
ymo=YM
X=XIDFLOAT( N)
RETURN

30 SUA=YMS
YMO=YM

60 K=Ktl
H=M4'1
Y4=YM*Y/FLOAT (M)
YNS=YMS+YM

%~ SUM=SUM.YM*( 1.DO-XKS)
XK=XK*XIFLOAT (K)
XKS=XKS+XK
AVS=(1.O0-YMS)*( 1.D0-XKS)

206: LANS;;T.EPSILN)GO TO 60

X=X/OFLOAT (N)
RETURN

60M=M+l
XMF=DLOG(OFLOAT(M))
YMLY=YMLYvYLOG-XMF
!F(Y-YMLY.GT.E)GO TO 600
YM=DEXP( -Y+YMLY)
IF(M.LE.I8)GO TO 70
YmO=0.
Yms~ym
SUM=0.Do
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K D= -N
IF(DFLOAT(KO).LT*X)G!J TO 80
P=0.DO
X=X/DFLOAT (N)
RETURN

80 K=K+l
XK=XK*X/FLOAT (K)
XKSnXKSXK
IF(K-KD180,90,90

90 K=XC+1
GO TO 91

10 XKLX=0.iOo
XLOC,=VLOG(X)

210 K=K+l
XKF= !ILOG(IDFL OAT (K))
XKLX=XKLX+XLOG-XKF
IF(X-XKLXe.GTE)GO TO 210
XK=DEXP(-X+XKLX)
10=18.K
GO TO 5
END
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USERID HASR CLASS A NAME SSCASE FORTRAN 02/14/75 12029024
OREAD SSCASE FORTRAN Al NASR 8/22/74 12049

SUBROUTINE SSWCI(NX8ARvYtPl
IMPLICIT REAL*S(A-)4,O-l)
DATA EvEPSILN/175.0091.D-6/
XBAR=OFLOAT (N) *XBAR
CONST=Y/( 1.DO4XBAR)
IF(N.GTol)GO TO 5
IF(CONST.GT.E)GO TO 6
P=OEXP(-CONST)
GO TO 100

6 P=0.DO
GO TO 100

5 SUM=O.DO
EX=CONST-DFLOAT(N-1)*DLOG( 1.0041.O0/XBAR)
IF(EX.GE.30.DO)GO TO 10
CALL PNXYS(N-190.D0,Y/(l.+1./X8ARIP~,YSUM)
SUM=( 1.OO-PP)*DEXP(-EX)

10 CALL PNXYS(N-1,0.D0,YfP1,YSUM)
P=SUN*PI

100 XBAR=XBAR/GFLOAT(N)
RETURN
ENTRY SSWC2(N,XBAR,Y,P)
CONST=Y/( 1.DO+XBAR)
CALL PNXYSIN*0.DO*CONSTiPYSUM)
RETURN
ENTRY SSWC3(NtXBAR,YfP)
X8AR=DFLOATIN) *XBAR
C3 1 * 00XBAR/2. 00
CONST=Y/C3
C2- 1 *OO.2.DO/X8AR
IF(N.EQ.1JGO TO 20
SWK=0.Do
EXzCONST-DFLOAT (N-2 ) *LOG( C2)
C=&EXP(-EX)*( 1.OO-2.DO*DFLOAT(tJ-2)IX8ARe'YIC3)
IFiC.LE.EPSILN)GO TO 200
CiLI PNXYS(N-l,0.DOY/C2,P1,YSUM)
SUM=C*( 1.00-Pi)

200 CALL PNXYSIN-lO00,YtP2,YSUM)
S UM= SUN P 2
P=SUM+YSUM* 1. 0/C3*Y
GO TO 250 1

20 IF(CONST.LT.EIGO TO 21
P=0.000
GO TO 250

21 P=DEXPI-CONST)*(1.004XBAR/(2.D0*C3)*Y/C3)
250 XBAR=XBARIDFLOAT(N)

RETURN
ENTRY SSWC4(NtXBARtYP)
C3= 1. D04XBARI2.DO
XN=DFLOAT (N)*OLOG(C3)
CONST=Y/C3
ClLL PNXYS(Nt0O0D,CONSTiSUHYSUK)
h-(1.D0-SUM.GT*EPSILN)GG TO 30
P=1.00
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GO TO 300

30 CALL PREAIRB(CONST,16.12D0,18.D0,150.D0,.75D0,2Cr.0OEKYt1)
IF(OFLOAT(2*N-1).GE*EKY)GO TO 31
P=0.DO
GO TO 300

31 94=N-1
IF(XN.GT.E)GO *i0 40
ZKzDEXP (-XN)

51 ZKS=ZK
LZXBAR/2. DO

42 JF(94.EQo2*N-I)GO TO 41

YSLJM=YSUM*CONST/OFLOAT (9)
SUN=SUM4YSUN*( 1.0O-ZKS)
ZK=ZK*Z*(2.DO*DFLOAT(N)-DFLOAT(4) )/(DFLOAT(94)-OFLOAT(N)41.DO)
ZKS=ZKS+ZK
GO TO 42

41 P=SUH
300 R~ETURN

40 94=9.1
XN=XN-OLOG(X8AR/2.DO)--DLOG(2.DO*'JFLCAT(N)-OFLOAT(4) )/IDFLOAT(94)-DF
ILOAT (N)+4 )
IF(XN.GT.EPGO TO 50
ZK=OEXP(-XN)
GO TO 51[

50 YSU94=YSU94*CONST/OFLOAT(94)
SU94=SUM+YSUM
GO TO 40

END
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USERID I4ASR CLASS A NAME ISCASE FORTRAN 02/14/75 12029042
OREAD TSCASE FORTRAN Al, IASR 8/29/74 11014

SUBROUTINE TSWC1(NXBARY#P)
IMPLICIT REAL*8(A-HvO-Z)
DATA E,EPSILN/175.0091.D-12/
X8AR= OFLOAT (N) *XBAR
CONST=Y/( 1.DO+XBAR)
IF(N.GT.l)GO TO 5
IF(CONSr.GT.E)GO TO 6
P-DEXP(-CONST)
GO TO 100

6 P=0.00
6O TO 100

5 SUMO0.00
EX=CONST-OFLOAT(N-1)*OLOG(1.DO.1.DO/XBAR)
IF(EX.GE.30OO)GO TO 10
CALL PNXYT(N-190.DOOY/(1.41./XBAR),PPYSUM)
SUM=(1.00-PP)*OEXP(-EXI

10 CALL PNXYT(N-1,O.DOtYPIPYSUM)
§ I P=sUM+P1

100 XBAR=XBAR/DFLOAT(N)
RETURN
ENTRY TSWC2(NXBARgYPl
CONST=Y/(I .DO.XBAR)
CALL PNXYT(Ni,00OCONSTPPYSUM)
RETURN
ENTRY TSWC3(N,XBAR,Y,P)
XBAR=DFLOAT (N) *YBAR
C3=1.DO0,XAR/2.00
CONST=Y/C3
C2nl.DO.2.DO/XBAR
IF(N.EQ.IIGO TO 20
SUM=C. 00
EX:CONST-DFLOATt.4-2 )*OLOG(C2)
C=DEXP(-EX) 'tl.O0-2.00*DFLOAT(N-2)/X8AR+Y/C3)
tF(C.LE.EPSILN)GO TO 200
CALL PNXYT(N-190.DOtY/C2*PI2 YSUM)
SUM=C*( 1.00-PI)

200 CALL PtEXYT(N-190.D0,YvP2,YSUM)
SUM: SUM.P2
P-SUM+YSUM* 1.00/C 3*Y
GO TO 250

20 IF(CONST*LT.E)GO TO 21
P=0.00
GO TO 250

21 P=DEXP(-CONST)*(1.D0+XBAR/(2.D0*C3)*Y/C3I
250 XBAR=XBAR/OFLOAT(N)

RETURN
ENTRY TSWC4(NXBARtYvP)
C3= 1. 00,XiAR/2.D 00
XN=0FL0AT (N )*OLOG( C3)
CONST=Y/C3
CALL PNXYT(Ni0.D0,CONST,SUM,YSUM)
IF(1.D0-SUM.GT.EPSILN)GO TO 30
P=1.DO
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GO TO 300
30 CALL PREAMB(CONST,30.DO,34.0O,175.DO,.8D0.55.00,EKY,1)

IFIDFLOAT(2*N-1I.GE*EKYJGO TO 31
PZo.DO
GO TO 300

31 M=N-1
IF(XN.Gr.E)GO TO 40
ZKODEXP( -Xt4

51 ZKS=ZK
Z=XBAR/2. DO

42 IFtM.EQ.2*N-1)G0 TO 41
"M="+II
YSUN=YSUM*CONST/DFLOAT (M)
SUN-SUM4YSUN*( 1.DO-ZKS)
ZKsZK*Z*(2.D0*DFLOAT(N)-OFLOAT(MJ) /(OFLOAT(M)-DFLOAT(N)41.DO)
IFfMOD(Ht9).NE.0)GO TO 47
WRITE(6948)ZK

48 FORMAT(1X*IZK-8,D15.8)
47 ZKS=ZKS4ZK

GO TO 42
41 P=SUM

300 RETURN
40 NM=M1

XN=XN-DLOG(XBAR/2.D0)-DLOG(2.O0*OFLOAT(N)-DFLOATfM) )/(OFLOAT(M)-OE
ILOAT(N)*1)
IF(XN.GT.E)GO TO 50
ZK-OEXP(-XN)
Go TO 51

50 YSUM=YSUM*CONST/OFLOAT(M)
SUN=SUN+YSUN
GOTO 40
END
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IJSERID, HASR CLASS A NAMtE PREAMB, FORTRAN 02114/75 12028008
OREAD PREANB FORTRAN Al HASR 8/20/74 15016

SUBROUTINE PREAMB(X*CEXlX2tX3tX4tXKINOI
IMPLICIT REAL*B(A-HO-Z)
DATA TWOP116.283185300/
IF(INO.EQ*2)GO TO 20
IF(X.GT.X1)GO TO I
XK-O. 00
RETURN

I IF(X.GT.X1.AND.X.LroX2)GO TO 21
XKxX3*X-X4
RETURN

21 CONIST--1.DO
2 XK=X+CONST*DSORT(CE*X)

- ~5 FX=X-XK+XK*DLOGL XK/X),.5*OLOG( TWOPI*XK )-CE
FXP=OLOG(XK/X )..5D0/XK
XKI=XK-FX/FXP
IF(DA8S(XKI-XK).LT.. 100)RETURN
XK-XKI
GO TO 5

20 COP4ST=1.DO
IF(X.LT.X1)GO TO 2
XKzX3*X+X4
RETURN
END
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USERID MASR CLASS A NAME THRES FORTRAN 02/14/75 12028014
OREAD THRES FORTRAN Al MASR 8/22/74 15025

SUBROUTINE THRESH(NtTOLoPFAPY1)
IMPLICIT REAL*8(A-H10-Z)
DATA E/175.DO/
PLOG=DLCG1O(PFA)
XPFAz1 *00/PFA I
Y:DFLOAT(N)**1. 15-2.DO*PLOG
GO TO 31

30 Y-OFLOAT(N)-S.DO*PLOG
31 IF(Y.GT.E)GO TO 10

212 M=O
YLX=0. DO
YLOGODLOG( V)
TSUM=DEXPf -Y)

21 IF(H.EQ.N-1)GO TO 20
110 "="*I

SUMK=DLOG(DFLOAT(m))
YLX=YLX+YLOG-SUNK
TSUNf= SUM.OEXP (-Y+YLX)
GO TO 21

20 Y1=Y+DLOG(XPFA*TSUM)*TSUM/OEXP(-Y4YLXI
IF(DABS(Y1-Y),LEeTOL )RETURN
Y=Y 1
GO TO 31

10 M=O
YLX=O*DO

YLOG=DLOG(IY)

SUMK= OLOG(IDFL OAT (M)

*IF(Y-YLX.GT.E)GO TO 11
TSUN=DEXP(-Y4YLX)
IF(M-N+l) 110,20,20
END
IMPLICIT REAL*8(A-G,O-Z)

1000 READ(5,*)N,TOL,PFA,IENO
CALL THRESHINvTOLvPFAiY)
h.RITE(6, 100)Y

100 FORMAT(1X99Y-99D15.8)
EIl KEND.EQ.0)RETURN
GO TO 1000
END
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APPENDIX B

DETERMINATION OF THE FUNCTIONS K (X) AND M (Y)

The function, K (X), is defined to have the property that for all integers

K such that

K < K (X) (B. 1)
C!

then

S~K:
'X 

X

e k- < c/2 (B. 2)

k=O

K (X) = 0 denotes that the sum is empt-y.
C

M (Y) is defined to have the property that for all integers N such

that

N >M(Y) (B. 3)
C
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then

N-1

YK

e 1 c/Z (B. 4)
mm

or equivalently

mNm
e < c/[2 (B. 5)

m=N

Using the square bracket notation to mean the largest integer less than or

equal to the quantity in the bracket, then ideally, we should determine K (X)
E

such that (K E(X)l is the minimum integer for which Eq. (B. Z) is true, and

[NI (Y)] is the maximum integer for which Eq. (B. 4) is true; it is of little

practical significance to have the exact values. Values close to their mini-

mum and maximum, respectively, are much easier to derive.

In 3rder to derive a useful K (X), we begin by noting that

K

X Xk eX X K (13.6)I K

k=O

Ke IS + Z + +...+
K' X

:5- e

XN

-X 1"
-<e (.6
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where Sterling Is approximation has been used for K !. If we restrict, for

example, K/X < 4/5, then Eq. (B. 6) indicates that Eq. (B. 2) is satisfied if

5 e -X X K

e E/2 (B.7)2,<KK

e

or equivalently

( +Kin K

S-e X-+Kn +52n-e ,/,0 (B. 8)

-6
For ( = 10 we have

C -16. 12 <
>Te" > e (B. 9)

and fore = 1

SC -30.0

1-- > e (B. 10)

so that if we solve

K 1fX(K,E)- X- K I<KIn +- In 2rrK- C =0 (B. 11)
X 2 (
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for K, where

F ~16.12 forE = 106

SC= •C

30.0 for E = 10-12

Kthe solution can be used for K (X) provided - is less than 4/5. The Newton-

Raphson iteration technique to solve Eq. (B. 11) is

Sflff(K, )

where

f (Kn In)= + . (B. 13)
X n'X972K

n

The initial value for K is obtained for Eq. (B. 11) by approximating InZ by
1

Z - 1 and ignoring the term I Rn2vK. Eq. (B. 11) then becomes

X K_ K 0

or

K2 -2XK+X C XxC:
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Solving for K

K X_+ X 2 +CE E . (B. 14)

Since we desire the smaller of the two roots of fx(CE), we choose the negative

sign for K 0

K0 = X - f (B. 15)

In Table B-I, empirically determined values of K, for which Eq. (B. 2,
-6 -12

is satisfied, are given for E 10 and E =10

Table B- I

E = 10-6 =10-12

X K X K

18 1 32 1

30 6 60 13

60 25 i00 37

100 54 150 70

150 93 175 88

200 134 200 107

250 176 300 184
300 218 350 224

400 265
500 348

600 433

700 519

60



-6 K 218..
From this table we have, withE= 10-, that for X -5 300, then - 1

X 300
027-12 K 10.727 < 0.8; and withE = 10 , that for X 5-700, thenK_ 5 19 - 0 741 < 0.8.

For these values of X we can use

K (X) = root of fx(KtE) (B. 16)E

For larger values of X, -we need another expression. By curve fitting, we

obtain for K (X)

K (X)= 0. 75X -20 (B. 17)

for X > 150. Since Eq. (B. 17) is much more simple than Eq. (B. 16), we use

it down to X > 150. For c = 10-, we similarly obtain

K (X) =0. 8 X -55 (B. 18)

-6 -12
for X > 175. For X < 18 withc 10 and for X <34withE 10 , we set

K,(X) to zero. Summarizing our results we have

0 for X < 34

X ()= 0 (B. 19)
S6(X) =root offx(K, 10) for 18-<X- S150

10

0. 75 X -20 for 150 < X
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0 for X < 34

K10.lz(X) root of fX(K, 10"2! for 34 : X:5 175. (B. 2Z)

10f
S0.8 X - 55 for 175 < X

M (Y) is dea!t with in a similar manner to that of K(X). If N> M (Y),

EE

then Y/N < 1, we have

e e

N + 1

y N 1

e~ (Be2

m"--•.7y NTVe :I ( I( ) "" 1 7

NN

e-Y y I(B. 22)

N N 1-Yi < E/2
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then Eqs. (B. 4) and (B. 5) are satisfied. If Y/N < 4/5, then

_y yN

5 e < C/2

or equivalently

- N + N in(N/X) + i 2-n K([Y •I (B. 2 3)

which reduces as in Ea. (B. 11) to

fy(N, c) 0 (B. 24)

An empirically determined table of values of M (Y) are given in Table B-ILE

Table B-Il

C 10-6 C = 10-l

Y N Y N

1 11 1 15

10 30 10 41

20 46 20 60

40 76 40 94

50 89 80 153

80 129 100 180

100 154 175 278

150 218 250 372

400 554
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Although Eq. (B. 24) is the same as Eq. (B. 11) exc-ept that we havr. replaced

X by Y and K by N, we are not looking for the same root. fy(N,1 ) ha3 two

roots and this time we need the larger root; whereas for fx(Kc) we needed

the smaller. This is accounted for by ou" initial value for N, which uses the

plus sign in Eq. (B. 14)

NO = Y + I-CCY . (B. 25)

The root can be used for large values of Y, but since we have a more simple

expression

M I0 6 (Y) 1.3 Y + 24 for Y 40
10

and

M0_(Y) =. 28 Y + 52 for Y 2- 80

we use

-610rt of )N(Y,0- for Y < 40

1. 3 Y +24 for Y 40

and

root-12 for Y < 80

M 1-1 2 (Y)=of 112

1. 28 Y +52 for Y z80
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APPENDIX C

ASYMPTOTIC VALUE OF OPN N 1)

We show that

=r_ Y (C. 1)
l 0 N N /L.

Gradshten and Ryzhik [Ref. 17] (p. 717, 6. 63. 8) give us

z -yz I Zz z 1 ey e-y i(
n- k=-(n-i )

(C. 2)

From Eq. (2. 1) we have

Y 0 N-iY 2 -(v + NX) zi-j)v
1 -oPN(XY) =e e?+N) ( v) dv

(C. 3)
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22 2so that by change of variables a Z= v and a = NX, we obtain

N + 1 -Y2 22N I- ZNe +a 21 OPN(XDY)= N-z N- (-cZ) dZ

2 a N 2 Z2S= Ze- e- IN 1l(2a Z) dZ

0

22

22 a 2

2+2 ' 21a e-r• e•azk(~ 2 a Z)d2C4

With a =Y -(N -1) and using Eq. (C. 2) we obtain

1- (Y(N 1) ~

- 2

k=-(N-1)

+ 2  Y-(N-1) zNea 2 Z IN- 1 (2a 2 Z) dZ 
I

+02 2

/ ak-N1
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= • 1-2[ (N[ -1)]-1)

k=-(N-e )

fJ y
Y- (N-l)

+ 2[Y - (N- 1)] e"[Y (N- )] zN e-[Y(N-1)] I N(Z[Y-(N- 1)]Z) dZ [

(C. 5)

Taking the limit as Y--.

IY -1 (C. 6)

and

e -(N-l)] Ik(Z[Y -(N-l)])--O for IKI •S N - 1 (C. 7)

so that Eq. (C. 1) is obtained.
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APPENDIX D

CASE 5 FORTRAN PROGRAM

The approximation is simply

5PN(X--Y, p erfc .[ (D. 1)

where

M (D. 2)

and

a =2 14Inp (D. 3)

The subroutine program titled PNLN (N, X, Y, R, P5) is given below where

N = Number of pulses incoherently integrated

X Average Input Signal-to-Noise Ratio

Y = Threshold Level

R p

P5 =PN(X, Y, P)

The complementary error function subroutine ERFC (X, ERC) cafled by

PNLN(N, X, Y, R, P5) also given below is based on Hastings [181 algorithm for

the error function.
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USERID MASR CLASS A NAME PNLN FORTRAN 02/14/75 12029019
OREAD PNLN FORTRAN Al HASR 8/27/74 14039

SUBROUTINE PNI.N(NvXvYPRHOtP5)
XN=X/RHO
SIG- SORT(2. *ALOG(RHO))
ARG=ALOG((Y- FLOAT(N-1))/( FLOAT(N)*XMI)/(1.414213562 *SIG)
CALL EREC( ARG, ERC)
P5-.5 *ERC
RETURN
END
SUBROUTINE EREC (X, EkCl
DATA A1,A2tA3,A4,A5,PPII.225836846t-.252128668, 1.259695i39
1-1.257822453, .94064607t.327591193. 14159265/
SPI=SQRT(PI)
IF(X)10,292

2 CI=0.O
C2= 1.*0

3 ETAz1./(1.4P*Xl
POLY=(((((A5*ETAA4)*ETA4A3)*ETAIA2)*ETA+Al)*ETA)
ERCzCl+C2*2.*POLY*EXP(-X**23/SPI

10RETURN
10C1=2.
C2=--1.

GO TO 3
END
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